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Abstract

The bridging stress of fibers along the crack surface plays an important role in analyzing the tension
behavior of short or long fiber-reinforced composites. This paper uses the inclusion theory to obtain the
expression of bridging stress for short fiber reinforced composite (SFRC). A simplified model with period-
ically distributed fibers is proposed to estimate the average fiber spacings. The total fracture resistance is
calculated as an energy summation including interface debonding energy dissipation, frictional sliding work
between fibers and matrix, strain energy increment of fibers and matrix. The bend over point (BOP) stress
is calculated by this fracture resistance. The necessary conditions of the fibers and matrix for the multiple
cracking in SFRCs are discussed and the expression of ultimate external stress is derived. The critical fiber
volume fraction for the strain hardening response is determined by an iteration method. In the meanwhile,
the average spacing between two short fibers is proposed by a periodical distribution assumption. The
theoretical prediction is compared with experimental data. © 1999 Elsevier Science Ltd. All rights reserved.

Nomenclature
a crack radius
d; fiber diameter

E; Young’s modulus of fiber

E, Young’s modulus of matrix

GM  critical energy release rate of matrix

/ average effective fiber embedded length
k friction coefficient
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L; fiber length

t thickness of the composite plate

Ve volume fractions of fibers

Ve the critical value of fiber volume fraction
Vi volume fractions of matrix.

Greek symbols

p* debonding surface energy per area

Ve, Vi Poisson’s ratios of fiber and matrix, respectively
O the tension strength of the matrix

T¢ frictional shear stress

Ty ultimate shear stress.

1. Introduction

It is well recognized that the behavior of tension-weak brittle materials can be improved by the
incorporation of high-strength, small-diameter fibers. This toughening effect comes from sliding
and debonding between the surface of fibers and matrix which increase the fracture resistance by
energy dissipation. From fiber length consideration, there are two kinds of fiber reinforced com-
posites: long and short fiber reinforced composites. Easy processing and low cost compared with
continuous long fiber-reinforced composites make the randomly distributed short fiber-reinforced
composites become more attractive. Using an extrusion technique, the randomly oriented short
fibers can also be aligned approximately in the load direction (Fig. 1). Moreover, with an increase
of fiber volume fraction, short fiber reinforced composites can achieve some properties similar to
those of long fiber reinforced composites, such as the strain-hardening behavior after the com-
posites’ bend over point (Li and Wu, 1992; Li et al., 1993).

Many theoretical models have been presented to predict the tension behavior of fiber reinforced
composite (FRC). Most of these models are for continuous long fiber reinforced composites.
Marshall et al. (1985) and Marshall and Cox (1987), studied the influence of fiber strength to the
tensile fracture behavior of brittle matrix composite based on the theory of micromechanics and
fracture mechanics. Aveston et al. (1971) adopted an energy balance method to derive the crack
extension stress and used a rule of mixtures (low V; case) and composite ultimate strength (high
V; case) to determine the critical V; for multiple cracking to occur. Using the inclusion method,
Mori and Mura (1984), Yang et al. (1991), Li et al. (1992, 1993) got the fiber bridging stress
expression, and then applied the energy approach to study the fracture behavior of the continuous
fiber reinforced composites. For the SFRC case, Liet al. (1991), Wu and Li (1992) and Leung and
Li (1991) utilized stress intensity factor and considered snubbing and bundling effects of fibers and
a two way debonding to analyze the discontinuous random fiber reinforced composite. The first
crack strength has been used by them to determine conditions of multiple cracking.

In the present paper, the inclusion method is used to deduce the relationship of bridging stress
and eigenstrain in the crack region for SFRC. The eigenstrain is determined by fracture mechanics
consideration. After getting the bridging stress and eigenstrain, the function between the external
stress and the total energy release rate of the composites is established. The necessary conditions
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Fig. 1. An infinite aligned short fiber-reinforced composite.

for multiple cracking occurrence are proposed according to equilibrium and maximum strength
theories. These conditions seem more reasonable than a single parameter criterion. BOP (at the
moment when the first transverse crack happens in composite) and multiple cracking behavior of
SFRC are examined using this model. Finally, a comparison between the theoretical and exper-
imental results is presented.

2. Spacing of uniformly distributed short fiber

The configuration of a model of an infinite SFRC under an uniaxial tension loading is shown in
Fig. 1. A Cartesian coordinate system (x, y, z) is introduced with the origin located at the point
‘0’. In this model, it is supposed that the length and the diameter of the transverse section of each
fiber are of the same values denoted by L and d;, respectively; all fibers are extended in the loading
direction (z-direction). The spacing of two neighboring fibers in the x-direction and in the z-
direction are denoted by A and 9, respectively. The x and z coordinates of the ends of the fibers
falling in a typical section of the model as shown by the dotted line in Fig. 1, are assumed to satisfy
a zigzag periodical relation: z = L/b x, for 0 < x < b, where b is the half period which is supposed
to be known. The geometry is also supposed to be independent of y. Thus, by calculating the
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volumes of the fibers and matrix (in the range of width b of the dotted line section), the average
spacings, 4, 9, satisfy the following equations.

Ynd?| L4+ L 1 %+L1 2—)”Jr + L 1 ml+(L 5)5
Jar | L T T A niLe— 2

t bt L; ’

L s (m+n)=i (1)

where V;and ¢ are the fiber volume fraction and the thickness of the plate, respectively. m+n+1
is the number of fibers in the dotted-line section along the x-direction. m defined by the second
relationship of eqn (1), is the number of fibers calculated from the second fiber in the dotted-line
section along the x-direction to the place where the first fiber of the next row enters into the dotted-
line section.

Equation (1) can be rewritten as

TCde df
=16, 2P e,

where ¢ = 0/L;. Equation (1a) indicates that A is a function of §, i.e. A = A(6). On the other hand,
0 can be expressed as

nd}?

T av

A JTAEQ— ) +32Vm(2— 2+ ¢*) (1a)

L—L,. (1b)

The two unknowns, 4 and §, can be solved from eqns (1a) and (1b). Thus, the distribution of fiber
in the matrix can be finally determined. If ¢ « 1, eqn (1a) can be reduced to

d |=n
A "\/5 ?f (IC)

Equation (1c¢) is just the spacing formula of the uniform long fiber reinforced composite for square
packing.

For SFRC, the cracks will most likely initiate at an end of fibers (Fig. 2). Generally speaking,
the randomly distributed short fibers in a crack have different embedment lengths varying from 0
to L¢/2. Those with short embedment length will be pulled out first and stop contributing to
bridging the crack openings and the composite load has to be sustained by the remaining bridging
fibers. The randomness in fiber embedment lengths should be in an average sense in order to make
the analysis rationally sound. Morton (1979) assumed that the average effective embedment length
may be estimated from the following equation

L2 9
= z—dz = L/4. 2)
0 Lf

This assumption was then used by Petersson (1980), and also cited by Li et al. (1991). Their studies
and our studies show that eqn (2) is reasonable in practice and may be used as a primary assumption
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Fig. 2. The crack in the composite.

to analyze the SFRC problem which will be also used in this paper. Note, however, that since the
BOP load, the maximum external load and the strain energy of the SFRCs vary nonlinearly with
the embedment length, this mean embedment length of /4 can only be used as an upper bound
estimate to the composite fracture problem as pointed out by Gopalaratnam (1985) and Gopa-
laratnam and Shah (1987).

3. Bridging stress

Consider a flat ellipsoidal inclusion €,, which approximately represents a penny shape crack in
a infinite domain subjected to a uniform tensile stress. Inside the Q,, there are a large number of
smaller ellipsoidal inclusions, designated by Q, each of them approximately represents a bridging
fiber (Fig. 3). The mathematical expressions of Q, and Q are

2 2 2

e S T 3)
a c a

x*+y? 2 c

e +C—2<1, Ef«l’ for Q, 4
4

where « is the bridged crack radius and 2¢ is the maximum crack opening displacement of the

crack.
To simulate the stress in the crack, the strain in the crack area, .., can be expressed as

g, €Qy—Q
eQ

)

o,

where ¢, is the eigenstrain (Mura 1987) in the matrix and can be evaluated by a matrix failure
strain determined later, and « is the bridging factor to characterize the crack opening in the bridged
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Fig. 3. Ellipsoidal inclusions.

domain Q, where 0 < o < 1. For perfect bond between fibers and matrix, o = 0; if there exists part
debonding or sliding, 0 < o < 1; for total debonding, o = 1.

Using the Green’s function given by Mori and Tanaka (1973), Li et al. (1992) obtained the
average bridging stress in a fiber which is given by

or =k (1—a) (6)
where
_ E.mce,
L2(1-v))d;

E,, v are the average Young’s modulus and Poisson’s ratio of the composites, respectively.

By the use of shear lag theory and neglecting the interaction between fibers, the stresses in the
debonding region were expressed as (Yang et al., 1991)
4tz 4tz V5

d > T a4,
where the meaning of z is shown in Fig. 3.

Through the microscopy analysis of the fiber pullout problem, Shao et al. (1993) and Stang et
al. (1991) pointed out that the sliding distance /, can be expressed by

Iy = kyor (8)

where

(7

O = 01—

d
ky =,
4Tf(1 +7/])

and
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Fig. 4. Debonding of the fiber.
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The relation of « defined in eqn (6) and the crack opening displacement can be expressed as
Ac = 2(l'{f_um)|z:0 = 2COCEP (9)

where u; and u,, are the displacements of fiber and matrix, respectively.

L gp l,—z [2—22
uy=| —dz=oy —21;

z Ef Ef def
b o )
U, = J‘: Em dz = 2fofm. (10)
Finally, from eqns (6), (8), (9) and (10), the expression for « can be found as,
2ky+1—./dk;,+1
o= (11)
2k
where
e = kik, { 2tk,  2tikon
P Erce, d; d )

4. Energy calculation

Having obtained the expression of bridging stress mentioned in the above, the stress in the fiber,
gy, can be found using the shear lag method (Fig. 4). Suppose [, < L/4, otherwise the fiber will be
pulled out. Detailed formulation is given in the Appendix. These results are:
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4

where
4k
ky def(l n, ks= dEf
AszO-T—k7, B=k80-T+k9

E_'_kS \/k4Lf/4 —\/k4

1—
kT
¥ okl _ g/kLif2 o= kil
4
Etfls
f
[
T el _ kL2 kil
(K v Ks i i
k4 4
kg = — — —
8 oVEib _ g/RaLif2 o= il
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e\/js _ e\/EL(/'Z ei\/kif‘/s .

(12)

(13)

The mechanism of the composite cracks arrested by fibers may be attributed to three kinds of
energy consumption: (i) the work done against the frictional sliding, W (ii) the surface energy
consumed by the process of debonding, W; and (iii) the strain energy increment in the fibers, .
The energy release rate is defined by AG = dW/d(na?). The results for these energies and the

corresponding energy release rates are

TECI

A
2 T ndf\[ Tf(uf m) dZ

_ n’d’diroy - 8nla’t? /1

; IN
2E, 3;2g, O

G. = oW, mditor P
o(na®)  I2E

na’ da’ i dyy*l
Wa=20" mdil, 2% = )7;

8nt? (140l
3PE

(14)

(14a)

(15)
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4
and
oW, d?
AGy = 0 = T ¢ (16a)

o(na®)  4E?

The coefficient ‘2’ at the beginning of the right hand side of eqns (14), (15) and (16), is due to the
sliding and debonding in both the upper and lower parts of the fibers, and the following na?/A? is
the number of fibers in the crack region.

5. Criterion for BOP

If no fiber exists in the composites, i.e. plain matrix, the stress intensity factor K| is only
dependent on the applied load and structural geometry. For infinite structures, we have

KI=2fo (17)
T

and,
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1—v2

G="p

Ki (18)

where G is the strain energy release rate for plane strain case (Aveston et al., 1971). E,, and y,, are
the Young’s modulus and Poisson’s ratio of the matrix, respectively.

According to the Griffith criterion, when G > G, a crack will propagate. Here, G is the
critical energy release rate that is a material constant of the matrix. For a given crack radius, a,
the critical stress, o.,, can be expressed by

nE,GM
O = | (19)
da(l—v2)

and, the corresponding failure strain is

o, [ aGY
ef =S T 20
Em 4aEm(1 — Vzn) ( )

When the external stress exceeds the critical value, the crack will propagate for a plain matrix. The
value of GM can be obtained from the experiment (Ouyang and Shah, 1991). However, with the
presence of fibers, the materials become tougher, because the resistance due to energy dissipation
is increased. The new fracture resistance becomes

R = GY+AG,+AG4+AG;. (1)
For composites, eqn (18) is still applicable (Mori and Mura, 1984), and it can be rewritten as
1—v,

E

C

R:

K3. (22)

So, the applied external stress at the BOP (when the first transverse crack happens) of the
composites is

\/rcEc(Gf:"[ +AG,+AG,+AG))
O’ =

4a(1—v2) )

where E, and y, are the Young’s modulus and Poisson’s ratio of the composite, respectively.

6. Multiple cracking

For fiber reinforced composites, two possibilities exist after the formation of the first transverse
crack: strain softening characterized by continuous opening of the major crack due to fiber pull-
out and strain hardening characterized by multiple cracking. For fiber reinforced cementitious
composites, the multiple cracking is described as a second or more cracks propagate along the
transverse direction, i.e. x-direction (Fig. 1), parallel to the first transverse crack (Gopalaratnam
and Shah, 1987; Li and Leung, 1992; Li et al., 1993). According to this definition, three conditions
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have to be satisfied in order to let multiple cracking occur. First, the failure force of the fibers in
the crack area should be larger than the first transverse crack force (BOP force), P*°%, i.e.

ot Vid, = PP (24)

where A is the transverse surface of the first crack and of is the strength of the fiber, otherwise the
fibers will be broken at the BOP and no multiple cracking happens.

Second, the tensile stresses re-built up in the matrix have to exceed the tensile strength of the
matrix. This also means that the total bond strength of a fiber between two cracks should be larger
than the matrix tensile strength, i.e.

L/4
<J\ 4T dl+ 4Tfls> M Vf
]S

df. I/m

> o, (25)

where o}, is the strength of the matrix and 7 can be calculated from the eqn (A1) in the Appendix.
Finally, the total bond force of the fiber should be greater than the first transverse crack force,
ie.

L/4
Z[ J mdfdzwfndfzs} > pBor (26)
Is

otherwise the fibers will be pulled out.

Suppose a fiber along the crack surface is under a tension stress, ¢*, then by using shear strength
criterion (Appendix) and letting the shear stress of the matrix equal 7, at z = [, we get the following
relationship

oA/ kre Kils 4 ey o=/ Kl -

df\/k»4(k8 e Vil _ ke e\/kjls)
In eqn (27), [, increases as ¢* increases, however there exists a critical debonding length /*, beyond
which the debonding process would be catastrophic. By setting do*/d/; = 0, this critical debonding
length together with the ultimate external stress can be expressed as

Le 1 T

¥y L -1 [ 4 2

[ 1 ﬁcosh . (28)
o Al AV Le

o' = d + ap tan hf 4 + /7 (29)

where
/ nE,,
ﬂ =

\/1 AE (L [
(1+vm)Ar rn(z Vf>
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Fig. 5. BOP stresses of various fiber volume fractions and diameters (L; = 10 mm).

and ¢" is the ultimate external stress which leads to the fibers being pulled out from the matrix,
assuming that the fibers are strong enough that they will not be broken in the loading process.

7. Results and discussion

The influence of fiber volume fractions and fiber diameters on BOP is shown in Fig. 5. The stress
values of BOP of the plain matrix are about 4.6 and 3.2 MPa as shown in Table 1, values (a) and
(b) respectively. When fibers are added, the stresses of BOP increase with the increase of the fiber

Table 1
Material properties and interfacial parameters

Item Value (a) Value (b)

Mix design C:S:W(1:2:0.5) C:W (1:0.35)
Elastic modulus of matrix 20 GPa 14 GPa
Elastic modulus of fiber 200 GPa 200 GPa
Days of aging 28 14

Surface energy of matrix 22 Nm™! I5Nm™!
Surface energy of interface §Nm™! 5.5Nm™!
Friction shear stress 1.9 MPa 1.30 MPa
Ultimate shear stress 2.74 MPa 1.92 MPa

Friction coefficient 422x10°"Nm~3 295x10°"Nm~3
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Fig. 6. Ultimate stresses of various fiber volume fractions and diameters (L; = 10 mm).

volume fractions as can be seen in Fig. 5. When V; = 10%, the stresses of BOP are 40-60% higher
than those of the plain matrix, depending on fiber diameter. Figure 5 also shows that matrix with
different material properties (Table 1a and 1b) can cause different bridging effects, although the
fiber diameters are the same.

The influence of fiber parameters on BOP stresses and ultimate stresses is quite different as can
be found in Figs 5 and 6. The BOP stresses calculated by eqn (23) do not seem to alter very much
with the different fiber diameters (Fig. 5). However, they have significant influence on the ultimate
external stresses of the composites as calculated by eqn (29) (Fig. 6). For the four different
diameters in Fig. 6, when V; = 9%, the strength with d; = 0.14 mm is about 40% greater than that
with d; = 0.20 mm. The reason is, that if the fiber volume ratio keeps constant, the increase of the
fiber diameters will increase the spacing of fibers. This implies that the fibers become sparser in the
composites. As a result, the bridging effects are degraded.

As is well known, for a cementitious fiber-reinforced composite, there exists a critical fiber
volume ratio, beyond which only the strain hardening or multiple cracking happens. In this paper,
the critical values of the fiber volume fractions with different fiber diameters are presented in Fig.
7. They can be calculated by a numerical iteration method using the criterion based on the fact
that the ultimate external stress should be larger than the BOP stress.

o' >0 (30)

where ¢ is defined in eqn (23) and ¢" is given in eqn (29). The material parameters used for Figs 6
and 7 are from Table 1, value (a).

Different mixing formulas have different interface properties and these properties directly influ-
ence the mechanical behavior of SFRC. Figure 8 plots the ultimate stresses as a function of fiber
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Fig. 7. Critical fiber volume fractions of various fiber diameters (L; = 10 mm).

volume ratios. It can be seen from the figure that the ultimate stress is significantly increased when
the interfacial bond becomes stronger.

To verify the applicability of the model presented in this paper, some theoretical results have
been compared with the experimental results. Figure 9 shows the comparison of BOP between the
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©,=1.92MPa, 1=1.30MPa
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Fig. 8. Ultimate stresses with different interfaces of fiber and matrix.
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Fig. 9. Comparison of predicted and experiment results (d; = 0.2 mm).

prediction of the present study and experimental results (Li et al., 1992; Shao et al., 1993; Lange
et al., 1996). The material properties and interfacial parameters for this kind of composite are
listed in Table 1 given by Liet al. (1991) and Li et al. (1992). The theoretical prediction reasonably
agrees with the experimental results.

8. Conclusion

The mechanism of fiber-reinforced composites depends on many factors such as fiber and matrix
properties, interfacial characterizations and processing methods. For the strain hardening type of
composites, the stress—strain curve can be divided into four stages, random damage distribution,
BOP, multiple cracking and only fiber sustaining any additional load. The enhanced toughness
and load carrying capability can be largely attributed to the fiber bridging, interfacial debonding
and sliding.

Based on the energy approach and the inclusion method, a theoretical model to predict the BOP
stress of the SFRC has been developed in this paper. It also provides the conditions for multiple
cracking. The model is simple and has been applied to SFRC successfully. In addition, this model
can be extended to analyze continuous long fiber reinforced composites.

Acknowledgements

The financial support of the grant HKUST 641/95E from the Research Grants Council of the
Hong Kong government is greatly acknowledged. Special thanks are also given to Dr Z. L. Li for
his helpful suggestions and discussions.



4086 Z. Li et al. | International Journal of Solids and Structures 36 (1999) 4071-4087
Appendix
Relationship between 6, and o

From Fig. 4, considering the chemical bond in the interfacial of matrix and fibers, the shear
stress can be described as

k m~ < Ty
o { (U —ttr) T <7Tu (A1)
Tr T=T,
The equilibrium equation of fiber stress and interfacial shear stress is
do; 4
—+—-1=0. A2
PR (A2)

Neglecting the interaction between the fibers, the global equilibrium equation is
Vior = Vior+ VinOn- (A3)
Combining eqns (Al), (A2) and (A3), together with

% _or d Oty _ Im
0z E; an oz E.’
the following differential equation can be deduced:
82
Gf—k40'f= _ksa'[‘ (A4)
0z*

where k, and ks are defined in eqn (13).
By the boundary conditions, ¢; continuous at z = [; and ¢, = 0 at z = L4, eqn (A4) can be
solved and eqn (13) is obtained.
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